
J. Fluid Mech. (1996), ool. 308, p p .  313-340 
Copyright @ 1996 Cambridge University Press 

3 13 

Manifestations of bottom topography on the 
ocean surface: the physical mechanism 

for large scales 

By VICTOR I. S H R I R A  AND SERGE1 Yu. A N N E N K O V  
P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Krasikova 23, 

Moscow 117218, Russia 

(Received 2 August 1994 and in revised form 22 September 1995) 

The paper is a first attempt at theoretical investigation of the experimentally observed 
enigmatic phenomenon of surface manifestations of bottom topography reproducing 
well the image of the relief despite several kilometres of ocean depth. Both satellite 
observations and direct measurements have been repeatedly reported in the last 
two decades. We suggest a possible mechanism for these manifestations in a large 
scale range (of the order 5 x iO’-103 km), based on the hydrodynamic theory of 
quasi-geostrophic stratified flow over topography on a 13-plane. 

The classical theories of quasi-geostrophic flow over topography on a 13-plane 
do not include vertical shear, and it is well-known that the disturbance caused by 
topography cannot reach the surface of a stratified ocean unless the stratification or 
current velocity is unrealistic. The new element changing the situation qualitatively is 
the taking into account of the influence of near-bottom and near-surface boundary 
layers, where flow velocities, velocity gradients and stratification can significantly 
exceed the corresponding values for the flow in the main body. The asymptotic 
solution derived shows the considerable increase of the normal mode amplitude 
towards the boundaries. Thus, this specific distortion of the eigenmode structure 
results in effective forcing of the modes by topography and, on the other hand, 
leads to pronounced disturbances in the fields of near-surface characteristics. The 
mechanism effectiveness is demonstrated by the fact that the surface disturbance 
amplitude normally significantly exceeds the corresponding value for the barotropic 
current equal to the maximum of the shear flow. A remarkable feature of the solution 
is that the Green’s function is strongly localized in the horizontal plane for a wide 
range of relevant parameters, thus leading to the close resemblance of surface patterns 
and bottom relief. To get a better understanding of the quantitative characteristics 
of the mechanism, the dependence of the effect on the parameters of an N-layer 
model was studied in detail. The amplification of the surface manifestations due 
to the presence of boundary layers can reach several orders of magnitude and thus 
make the manifestations easily observable. The surface temperature anomalies due to 
topography were estimated and found to be observable under favourable conditions. 

1. Introduction 
Modern physical oceanography does not provide grounds to assert that a direct link 

between surface and near-bottom fields may exist, and it is generally assumed that 
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any resemblance between patterns observed at the surface and bottom topography 
features is illusive. 

However, certain spectacular experimental observations of recent years motivated 
us to reconsider this common viewpoint. First, from the beginning of intensive 
manned orbital flights, people who had the benefit of observing the Earth from space 
repeatedly reported ‘underwater mountains’ that they were able to discern beneath 
the ocean surface at a depth of several kilometres. These observations, ‘unusual 
from any traditional point of view’ (Solomakha & Fedorov 1983) were initially 
discarded as impossible: besides the fact that they were never made by specialists 
in oceanography, no documentary evidence was presented, and information on the 
conditions of observation was always lacking. Nevertheless, such strange reports, 
repeated independently by different people with persistence and certainty, could not 
remain in the field of ‘scientific folklore’ and eventually gave rise to first attempts at 
investigation. 

These observations have never been systematized, the already cited paper by 
Solomakha & Fedorov (1983) being probably the only attempt at a serious analysis. 
These authors stated that the bottom topography cannot be directly visible from 
space, despite the claims otherwise. Indeed, it is well-known that an underwater 
object can very rarely be seen beneath the depth of, say, 50 m (e.g. Jerlov 1968); but 
the actual thickness of the water layer above the mountains so ‘observed’ sometimes 
exceeded several kilometres! On the other hand, the possibility that changes in the 
geoid height due to bottom topography can be observed visually was also disproved 
by Solomakha & Fedorov (1983); the corresponding tilts of the surface were found 
to be at least an order of magnitude smaller than those that could be observed. Three 
more realistic hypotheses were discussed on a qualitative level, the topographically 
caused disturbances in the surface and subsurface flow fields being their common 
basis. The authors claimed that the plankton or mud redistribution due to these 
disturbances may be observable, as well as surface wave modulations, and specified 
the optimal visibility conditions, but did not point out any mechanism responsible 
for the formation of such disturbances in the upper layers. 

Meanwhile, observations of another kind appeared several years ago, yet did 
not get attention they merited. It was discovered that there are bands in the 
one-dimensional spatial spectrum where surface temperature has surprisingly high 
correlations with the bottom topography (again at several kilometres depth!). This 
remarkable phenomenon was probably first mentioned in the short note by Paramonov 
& Lebedeva (198 l), who measured surface temperature across the Mid-Atlantic 
Ridge. Several years later Ilyin & Melnikov (1988) investigated these correlations 
more thoroughly and found two spectral bands of high correlations: 4-40 km and > 
200 km. They also supposed that certain non-specified global mechanisms connecting 
bottom processes with those in the near-surface layer must exist, and suggested that 
the appearance of the correlations at shorter scales might be due to the fact that 
the process of baroclinic tide formation is dominated by topography. Figure 1 shows 
some typical examples of the existing evidence of the remarkable bottom topography- 
near-surface temperature correlations. Figure 1 (a) was taken from the recent data 
(Melnikov 1988). However, similar examples can be, in principle, extracted from the 
vast amount of existing hydrographic data, never analysed from this point of view to 
our knowledge. Figure 1 ( b )  is based on the data given in the classical atlas (Fuglister 
1960). In this paper we concentrate on processes with wavelengths of 102-103 km, 
though the ideas can also be applied to somewhat shorter scales. 

Thus, an explanation of the observations described above requires first of all 
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FIGURE 1. Examples of bottom topography manifestations in the near-surface temperature field. 
(a )  Temperature profile on a ckoss-section over the Mid-Atlantic Ridge at 34" N (Melnikov 1988). 
( b )  Temperature profile along 32" S, plotted using the data from Fuglister (1960, cf. plot on p. 19.). 

a hydrodynamic theory providing a distinct pattern of surface or near-surface flow 
characteristics closely related to the shape of bottom relief features. This 'hydrodynamic 
image' then could be transformed into directly observable features on the surface 
through a number of mechanisms, some of which are well-known from the study 
of internal wave manifestations (see e.g. Pelinovsky 1982). In this work we will 
be concerned with the hydrodynamic part of the problem. In order to explain the 
observed phenomena, the hydrodynamic theory must : 

(i) provide an effective mechanism for the penetration of near-bottom perturba- 
tions to the upper layer, and 

(ii) this mechanism should give local or near-local relations between topography 
and the flow perturbation at the surface. 

These conditions ensure that the topographic image be visible (easily observable), 
and preserve similarity to the real topography shape. 

Our attention will be focused on the steady patterns, since they seem more likely 
to be observed, and it is natural to postulate a priori that the mechanism can be 
found within the stationary model. The scales involved suggest making use of the 
quasi-geostrophic P-plane approximation; smaller scales will be considered elsewhere. 

The theory of rotating stratified flow over topography is a well-established part 
of classical hydrodynamics. However, most attention in the past was attracted 
to the case of uniform (f-plane) rotation. Fewer papers were concerned with p- 
plane flow, probably Ingersoll (1969), McCartney (1975, 1976), Janowitz (1975) and 
Johnson (1977) being the most important; see Hogg (1980) and Zyryanov (1985) for 
reviews. The theory is still far from being complete: for instance, no understanding of 
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the process of time-dependent adjustment of P-plane flow that encounters topography 
exists, and no numerical work comparable to the famous f-plane investigation of 
Huppert & Bryan (1976) has been done, to our knowledge. 

Nevertheless, the relatively simple problem of steady horizontally uniform zonal 
quasi-geostrophic flow over low-rise one-dimensional or axisymmetric topography is 
rather well-studied. This problem is linear, and it is natural to present the solution 
in the form of a convolution of the corresponding Green’s function G and any 
topography, which is assumed localized. The separation of variables leads to an 
expression for the horizontal part of G via Bessel functions, in the case of eastward 
flow supplemented by infinite Fourier-Bessel series representing the wake of stationary 
Rossby waves behind an obstacle. This distinguishes the P-plane solution from the 
f-plane one, where there is no wake, at least in the case of horizontally uniform 
current, and the Green’s function is logarithmic, the disturbance being more ‘spread’ 
over the horizontal plane. 

In the simplest model of vertically uniform current and stratification the exact 
expression for G is well-known; but attempts to take into consideration the vertical 
structure of the flow meet the inevitable impediment - the vorticity equation cannot be 
solved analytically when velocity U and/or Brunt-Vaisala frequency N change with 
depth. We were unable to find in the literature any successful analysis of shear effects 
relevant to this problem. The only partial success we are aware of was achieved by 
Rooney & Janowitz (1979) who managed to take into account the atmospheric wind 
shear via the modification of boundary conditions. However, a true consideration 
of vertical shear effects still remains an open problem and, generally speaking, even 
the direct numerical solution of the stationary problem may be impossible for an 
arbitrary profile of U ,  since the details of the evolution towards the stationary state 
prove to be important. 

Thus, we are left with the unsheared incoming zonal current over infinitesimal 
topography. The explicit solution for this case shows that a disturbance over ax- 
isymmetric topography has the shape of a ‘Taylor-Hogg cone’ (the term proposed by 
Zyryanov), its amplitude decaying exponentially with the distance from the bottom. 
The real ocean is rather strongly stratified in this sense, and the cone usually cannot 
reach the surface unless the barotropic current has the speed of 5-10 cm s-I,  which 
is too high for the time- and vertically averaged currents in the ocean. 

The new element in the present work changing the situation qualitatively is the 
taking into account of the specific vertical structure of the flow, viz. the presence of 
surface and bottom boundary layers. Indeed, the surface layer usually has a current 
velocity much higher than that of inner layers and is characterized by large gradients 
of current and stratification; the same, though to a lesser extent, is true for the bottom 
layer. There is no need to seek corroboration of the former statement, the latter being 
also supported by observations (see e.g. Dickson et al. 1985; Warren & Owens 1985; 
Klein 1987) and some theoretical models (Barenblatt, Galerkina & Lebedev 1992). 
However, it is important to note that the lower boundary layer is usually rather 
weak (at most 3-4 cm s-l on average, though much larger values were observed 
occasionally, see e.g. Klein 1987). We demonstrate that if the realistic vertical flow 
shear is taken into account, then the ‘transmission’ of the disturbance from bottom to 
surface is found to be considerably higher than for the barotropic flow with the same 
flux (we term their ratio an ‘enhancement coeficient’), and the characteristics of the 
upper layer can be significantly distorted by topography. The mechanism turns out 
to be remarkably effective provided that the boundary-layer structure of the ambient 
current is sufficiently pronounced, and the enhancement coefficient can exceed lo1 
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for geophysically relevant parameter values (examples are shown in figure 5 below). 
As discussed in $ 3 . 3 ,  the response normally even exceeds that of the barotropic flow 
equal to the maximum of the sheared current. The coefficient attains even larger values 
for the disturbance velocity at the surface. It is important that the unrealistic bottom 
current velocity is not needed for the mechanism to work. In order to be assured that 
experimentally observed flow structures are compatible with the conditions involved 
in the theoretical predictions, we have carried out an analysis of the dependence of 
surface disturbance amplitude on the parameters of a three-layer model, which is the 
simplest one implementing the vertical structure described above. We show that even 
in the case of relatively low topography the free surface deflection turns out to be of 
the order of 10’ cm per 100 km, the variations of the surface current are comparable 
with the undisturbed values, and the pycnocline displacements can be up to dozens 
of metres and may be observed visually under certain conditions. 

On the other hand, we show that for large enough length scales the ratio between 
different Fourier harmonics of the topography and their counterparts in the surface 
perturbation tends to a constant (i.e. the ‘transmission coeficients’ for different Fourier 
harmonics cease to depend upon scale). Thus, the topography is shown on the surface 
with virtually undistorted large-scale features, producing an impression of ‘direct 
visibility’ of large-scale underwater features through the thick water layer. 

The paper is organized as follows. Section 2 contains the statement of the problem 
as a quasi-geostrophic vorticity equation forced at the lower boundary. In 3 3 we study 
the problem within the most general continuous model. For the steady motions that 
are of prime concern for us nonlinearity in the vorticity equation vanishes identically 
and the problem reduces to a linear boundary problem, which is treated via the 
standard normal mode analysis employing, however, the smallness of boundary-layer 
thicknesses. It is found that the presence of bottom and surface layers with sharp 
vertical gradients of current and stratification does not change, to the first order of 
the asymptotic procedure, the dispersion properties of vertical normal modes. Instead, 
it changes drastically the mode profile within the layers, which becomes proportional 
to ( U  - c) there, U and c being the basic current and the phase velocity of the 
mode. Thus, for the type of vertical structure being considered, the stationary modes 
acquire ‘tails’ attached to the horizontal boundaries. These tails result in significant 
enhancement of the surface manifestations: the bottom tails increase the forcing of the 
modes by topography while the surface tails lead to more pronounced disturbances 
of these forced modes in the fields of near-surface characteristics. On the other hand, 
since the Green’s function is found to be strongly localized in the horizontal plane, 
the surface disturbance preserves the shape of the topography. This fact provides the 
hydrodynamic grounds for the close similarity observed between surface patterns and 
bottom relief. 

In $4, in order to clarify the role of various parameters that characterize the basic 
flow we consider the multi-layer model. We obtain the general expression for the 
Green’s function for an arbitrary step-like velocity profile. This solution is used 
for the thorough analysis of the properties of the disturbance due to topography in 
the parameter space of a three-layer model, which was chosen as the simplest one 
representing the type of vertical structure described above; the direct computations 
are analysed. 

Section 5 gives a brief discussion of the results and their possible applications. 
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FIGURE 2. Problem statement and basic notation. 

2. Basic equations 
Let L and UO be the length and velocity scales, H the vertical scale, equal to 

the depth of the fluid, and f o  and ,f?o = dfo/dy the Coriolis parameters, where 
,f? = fl0L2/Uo. The motion depends generally on four non-dimensional parameters: 
the length-scale ratio 6 = H / L ,  the Rossby numbers E = Uo/foL, ET  = 1/Tf0, and 
the Burger number 

N i S 2  g H A p  B = - - -  - 

where T is a timescale, NO is some reference value of the Brunt-Vaisala frequency, 
ps(z) is a vertical density profile in the undisturbed state, po and A p  are the char- 
acteristics of this undisturbed profile, namely the Boussinesq reference density and a 
measure of vertical changes. 

With a Cartesian frame ( x , y , z )  having its origin on the bottom (with topography 
removed), where x increases to the east, y to the north, and z upward (see figure 2), 
motions of inviscid incompressible fluid with a rigid lid on the surface at z = 1 are 
governed by the equations 

f o 2  fo2L2Po' 

au 

at 

E T ,  + €4 * v u  - (1 + .py)v = 

€7- +€q .vv  + (1 + efly)u = -- 

G t  
32) 

I aw 2 d P  
€#- + € 6  q * v w  = -7 - p ,  

€ q ' V p + B w - = O ,  

at 02 

4% 
dz 

J vq = 0. 

The velocity q = (u ,  v, w}, pressure p and density p are assumed to be dimensionless, 
while their dimensional counterparts (denoted by an asterisk) can be obtained as 

(2.2) I (x*,y*,z*} = L(x,y ,z} ,  

P* = Po UofoLp(x, y ,  z ) ,  

(U*,U*,W*) = U o { u , v , ~ w ) ,  

P* = [PS(Z)  + P ( X ,  Y ,  Z j l  AP. 
€ 

To simplify the notation, we introduce a function which comprises the stratification 
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effects 
dPs 

S ( 2 )  = -B--. 
dz 

The formulation is completed by the conditions at rigid boundaries 

I w = Vh, z = h(x, y ) ,  

w = 0, z = 1. 

Expansion of the dependent variables in powers of E leads to the vorticity equation 

) (?2 +-----) ap a ap 8 p p + - - - + p y  a l a p  = o  
at a x a y  a y a x  aZ s az 

with the boundary conditions 

where J (a ,  b) = axby - a&. 
We are concerned with the quasi-stationary disturbances of large (6 = 10-1-10-2) 

horizontal scale caused by topography to a steady incoming zonal flow with vertical 
shear U ( z )  and assume that the quasi-geostrophic approximation is valid. This means 
directly that cT < e e l  and also imposes constraints on the disturbance structure, 
since quasi-geostrophy implies motions of slow speed with gentle sloping of isopycnic 
surfaces. In order to satisfy these limitations, it will be generally assumed that 
B 3 O(1). 

3. General case of continuous stratification 
3.1. Analysis of the vorticity equation 

There are two common ways to deal with the problem (2.4)-(2.5). The first, applied 
usually for the study of linear Rossby waves over infinitesimal topography, consists 
in the linearization of (2.4) and (2.5) about the upstream conditions, assuming 
e T / e  = 0(1), and searching for the solutions of the type 

w = Re{$(z)exp[i(kx + l y  + o t ) ] } ,  

where y denotes the perturbation streamfunction, p(x, y ,  z )  = -U(z)y  + ~ ( x ,  y ,  z). 
This procedure yields the linearized vorticity equation 

with the boundary conditions 

(3.2a) 

(3.2b) 



320 K 1. Shrira and S. Yu. Annenkov 

Here the prime denotes differentiation with respect to z ,  c = o / k ,  o = U - c, and the 
lower boundary condition has been transferred onto the undisturbed bottom. 

On the other hand, it is easy to see that the problem is naturally linearized just 
by omitting its non-steady part. Since we are interested mainly in quasi-stationary 
disturbances caused by topography, we can put ~ T + E  in (2.41, and so obtain 

1 3 l a p  
J p,V2p+---+fy =o ,  ( a z s a z  

or 
a l a p  
aZ s az v’p + - - - + f y  = F ( p ) ,  

(3.3) 

(3.4) 

where F ( p )  is an arbitrary function. Assuming the absence of closed streamlines above 
topography, we easily obtain 

p d l d U  p 
U d z S  dz U’ 

t ; ( p )  = - p -  

and, again denoting the perturbation streamfunction by y ,  get 

- d l d U  

with the boundary conditions 

i?tp y d U  
dz U dz 

- 0, z = 1, 

(3.5) 

(3.7a) 

(3.7h) 

and Long’s condition of no upstream influence is also required. 
It is obvious that the transition from (3.3) to (3.6) is possible only when all 

streamlines originate upstream. The question of whether the solution of this stationary 
problem with closed streamlines found a posteriori is applicable has a long history 
(see e.g. discussions in Hogg 1973, $7; McCartney 1975; Zyryanov 1985). It appears 
to be well-established now that if a closed streamline emerges in the flow, the viscous 
effects will eventually kill off the motion within it, and a stagnant region will be 
formed, separated from the rest of the flow by the so-called Stewartson boundary 
layers. The inviscid solution is thus indeterminate in principle; however, it seems 
reasonable to assume that the inviscid flow within the closed streamlines ‘memorizes’ 
the state ‘just before’ the streamline was closed and this part of the flow was isolated. 
Then equation (3.6) may be applicable (in any case, it is applicable on any streamline 
that originates upstream). Following the usual practice, this difficulty is ignored below. 

The boundary-value problem (3.6)-( 3.7 a, h )  is hardly tractable analytically in the 
general case ; however, certain additional assumptions that can give essential gains in 
simplicity are consistent with our purposes. First, we assume that the homogeneous 
counterpart of the problem does not possess baroclinic instability, i.e. the imaginary 
part of the phase velocity is equal to zero; this does not lead to loss of definiteness 
since the corresponding sufficient conditions for a quasi-geostrophic model can be 
stated explicitly (this is not the case for a general nearly geostrophic model). For our 
purposes, it is enough just to bear in mind that the point c = 0 should lie outside 
(and somewhat distant from) the ‘semicircle’ for the phase speed of an unstable 
mode. Certainly, this estimate could be more precise (see Gnevyshev & Shrira 1990). 
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Consequently, we require that the current be unidirectional, so that its velocity cannot 
vanish anywhere in the flow. 

Second, we shall ‘transfer’ for simplicity the lower boundary condition onto the 
undisturbed bottom, following numerous earlier studies (Johnson 1977; Zyryanov 
1985), although the exact boundary condition could easily be taken into account. 
The thorough comparison of two solutions carried out in a different context by 
Schar & Davies (1988) led to the conclusion that within the quasi-geostrophic ap- 
proximation the two flow fields are ‘commensurate’, i.e. the ‘simplified’ boundary 
condition merely distorts the mountain shape without significant changes in the so- 
lution structure. Actually, the quasi-geostrophy itself limits the solution in a way 
that makes the use of exact lower boundary condition excessive - the solution for 
infinitesimal topography is valid for higher obstacles provided that the flow does 
not leave the quasi-geostrophic regime. Thus, the boundary condition (3.7 b )  will be 
applied on the surface z = 0. 

Applying to (3.6)-(3.7a,b) the Fourier transform in ( x , ~ ) ,  we find for the trans- 
formed streamfunction $(k ,  I, z) 

and 

The solution of the problem (3.6)-(3.7 a, b) then can be written as 

v(x, Y ,  z )  = 11; 1: G(x - 5,Y - rl,z)h(t,rl) dtdy, (3.10) 

where the Green’s function G(x,y , z )  is obtained via the solution of (3.8), (3.9) when 
h = 1 is formally set. This can be solved numerically for arbitrary S ( z ) ,  U ( z )  (recall 
that we exclude the cases with U = 0 at some z ) ;  the solution for S = const, 
U = const can be found in Johnson (1977), Zyryanov (1985). Thus, the solution of 
the nonlinear forced quasi-geostrophic problem (3.3) consists of the stationary Rossby 
waves represented by (c = 0) solutions of the linearized problem (3.1)-(3.2), but with 
the homogeneous boundary conditions instead of (3.2 b) .  The fact that the nonlinear 
terms are found to be identically equal to zero is due to the neglect of time-dependence 
and to the uniformity of the incoming flow; the situation here closely resembles that 
of two-dimensional stationary Boussinesq flow over topography, when the nonlinear 
terms also vanish provided that the stratification is uniform (Grimshaw & Yi 1991). 

Consequently, in order to obtain the Green’s function for (3.6)-(3.7a,b), it is 
necessary first to study the properties of the linearized problem (3.1)-(3.2) for c = 0 
and h 3 0. Since the phase velocity is fixed, the squared wavenumber kt acts as 
an eigenvalue, the special feature of the problem being in the fact that real and 
imaginary values of k h  are equally important. Indeed, they both correspond to poles 
in the integrand of (3.10)’ real k giving those on the real axis, thus yielding a wake 
of trapped Rossby waves behind the obstacle. In the next subsection we, however, 
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release the limitation c 
of (3.1). 
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0, since the analysis there is carried out for the general case 

3.2. Asymptotic analysis: boundary-layer-type asymptotics 

In this subsection our attention will be focused on the normal mode solution of the 
homogeneous boundary-value problem for the vorticity equation (3.1). We consider 
the case when the functions U(z), S ( z )  vary slowly over the entire fluid depth except 
for the narrow layers (of dimensionless depths 41, 42) near the boundaries z = 0, 1 
respectively, where the gradients of these functions are localized. 

It is convenient to write 

(3.11) 

where h1 = khdl, 62 = khdl, p measures the ‘outer’ depth scale, i.e. the characteristic 
scale of depth over which the interior functions change, 114 min(bl, 62), indices ‘I’ 
and ‘*’ correspond to lower and upper boundary layers, respectively, and we assume, 
without loss of generality, that U ( z )  = Ui, S ( z )  = Si outside the boundary layers 
(i.e. the ‘fast’ functions in the right-hand side tend to 1 as their arguments approach 
infinity). Here and below the term ‘interior’ is used for the functions that characterize 
the main body of the flow. 

Consider now the vicinity of, say, the lower boundary. The problem is posed by 
the equation 

(3.12) 

where (T = U - c, with the boundary conditions 

04’ - o’qb = 0, z = 0,1, (3.13) 

where V ( z )  and S ( z )  are assumed to vary only within the layer of depth A near 
the bottom z = 0, so that 441 and kd41. Using the asymptotic technique of 
Shrira (1989), we expand 4, 0 and the operator d/dz in the form 

where 6 = kA, zo and z1 correspond to ’inner’ (i.e. within the sheared layer) and 
‘outer’ depth scales, respectively. At the zeroth order the equation yields 

a 1 a 1 do* 
(ZK) -4(O)C?l, (2%) =O* 

The fundamental system of solutions for this equation is 

(3.15) 

(3.16) 

where A” and BO are arbitrary functions of z l ;  (3.13) gives A0 = 0. So at this order 
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the ‘inner’ solution takes the form 

where the eigenvalue co and the function f are as yet arbitrary. 
At the next order we formally obtain 

(3.17) 

(3.18) 

Since we have assumed that U - cg # 0, it follows that df/dzl = 0; but co and f are 
still arbitrary, and so the last term on the right-hand side of (3.18) can be absorbed 
into (3.17), the first-order approximations to C$ and c being identically zero. Thus, 

= 0, and we have also obtained the lower boundary condition for the outer 
solution. In order to get the eigenvalue co, we have to move up to the second order. 
After some algebra, one finds that 

with B2 arbitrary. The right-hand side must remain finite as zo + a; this requirement 
leads to the dispersion relation 

- - + A $  - k , z+-  f = O .  
P Z ,  a2f ( I> 

Together with the boundary conditions 

=o ,  z 1 = 0 , 1  a f  
821 

(3.20) 

(3.21) 

this determines f and co and completes the solution. The other boundary layer is 
treated analogously. Let us then summarize the results : 

(i) The leading-order solution has the form 

(3.22) 

where 

1 - c  
so that $ ( z )  + 4,(z) as 81 + 0, 82 -+ 0. This form describes the distortion of the 
normal mode within the boundary layers; note that this result is independent of the 
S ( z )  profile. 

(ii) 4 i ( z )  is given by the standard boundary value problem (3.20)-(3.21) without the 
boundary layers, being merely the familiar trigonometric solution for the case when 
U and S are constant. 

(iii) The dispersion properties of the solution are completely determined by its 
interior part (using this term in the aforementioned sense), and are unaffected by the 
boundary layers, to the second order in 81, 8 2 .  

We note that the problem considered differs from the analogous boundary-layer 
problem for the Rayleigh equation in the classical theory of hydrodynamic stability, 
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FIGURE 3. Mode distortion for the ‘antisymmetric’ basic currents: asymptotic (solid lines) and 
numerical (dashed lines) solutions of the boundary value problem (3.12), (3.13). (a )  The spe- 
cific current profile U ( z )  with the ‘antisymmetric’ boundary-layer structure, used in this exam- 
ple. ( h )  The Brunt-Vaisala frequency profile N ( z ) .  (c) Barotropic and first baroclinic modes 
for c = -4.33 cm s-’, corresponding to the (numerical) eigenvalues kl  = 3.48 x lo-’’ m-’ 
and k i  = -4.43 x lo-” mP2. ( d )  The same for negative ( U  - c )  values, c = 5.98 cm s-’, 
k i  = -2.75 x m-2 and k i  = -8.07 x lo-’’ m-2. 

owing to the specific form of boundary conditions (3.2) (but, incidentally, the problem 
for the Rayleigh equation with afree surface is similar to the problem considered, see 
Appendix to Shrira 1993). Indeed, no solution of the ‘vorticity wave’ type appears. 
Moreover, the only consequence of a boundary layer imposed on the slowly varying 
current and density profiles is that the vertical mode gets attached to the inner 
sides of the boundary layers as if they were solid (satisfying the boundary condition 
d4i/dz = 0, the solution within the layers being proportional to ( U - c ) ,  to the leading 
order, thus forming ‘tails’ affixed to either end of a slowly varying function. 

To illustrate the result, the solution of the boundary-value problem for the particular 
functions U ( z ) ,  N ( z )  (figure 3 a, b )  is presented in figure 3 (c ,  d )  for two different values 
of c (solid curves); the barotropic and first baroclinic modes are shown. In fact, the 
only ‘wave-like’ mode (i.e. with I C ~  > 0) is the barotropic mode in case (c ) ,  and 
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FIGURE 4. Mode distortion for the 'symmetric' basic currents: asymptotic (solid lines) and numerical 
(dashed lines) solutions of the boundary value problem (3.12), (3.13) for another basic type of vertical 
structure U ( z ) ,  N(z ) .  ( a )  Current profile U ( z )  with the 'symmetric' boundary-layer structure, used 
in this example. ( b )  The Brunt-Vaisiila frequency profile N ( z ) .  (c) Barotropic and first baroclinic 
modes for c = -4.33 cm s-', corresponding to the (numerical) eigenvalues k i  = 3.46 x lo-'' m-' 
and k i  = -3.85 x LO-'' m-'. ( d )  The same for negative (U - c) values, c = 5.98 cm s-', 
k i  = -2.77 x lo-'' m-' and k i  = -8.23 x lo-'' m-2. 

in case ( d )  only the spatially decaying modes are possible; it is worthwhile noting 
that wave-like and decaying modes are equally important for the forced problem. 
For comparison, the direct numerical solutions, obtained with a staggered-mesh 
finite-difference scheme, are given (dashed curves). Another example is shown in 
figure 4(a-d),  where the boundary layers have different shear signs. It is seen that, 
in general, the modes have local extrema near the boundaries, their signs coinciding 
with those of the function (U  - c). 

3.3. The forced problem 
In this subsection the result obtained is applied to the problem (3.6)-(3.7 a, b).  Provided 
that the functions U(z ) ,  S(z )  can be presented in the form considered in the preceding 
subsection, the Green's function can be calculated directly. It is obvious that, in 
order to be effectively forced by topography, a natural mode of the system must have 
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non-zero amplitude in the vicinity of the bottom, and the degree of forcing depends 
directly on this amplitude. On the other hand, the modes that have a maximum 
at or near the surface are most easily observed, providing the basis for the bottom 
topography manifestations in the surface field. 

Thus, taking into account narrow shear layers near the horizontal boundaries 
helped us to point out the class of situations when the response to the topogra- 
phy in the surface and subsurface fields is significantly enhanced. Certainly, this 
rather qualitative conclusion is unable to explain on its own the high surface fields- 
topography correlations mentioned earlier, investigations of the dependence of the 
Green’s function on horizontal coordinates being necessary. 

If the complete orthonormalized set of normal modes 4 , ( z )  with the corresponding 
eigenvalues IC, is known, then, expanding the solution over the eigenmodes of the 
homogeneous problem, we obtain the Green’s function in the form 

“(O) 4 i ( z )  exp(ik1x + ik2yj dkldkz, (3.24) 1 1 
G ( x , ~ , z )  = -__ 4 n + ,  / [ $ k i + k i - ~ :  

and the integration in (3.24) gives 

G( R, 8, z )  = & R, z )  + F( R, 0, z ) ,  

where 

(3.25) 

and 

where (x, y )  = R(cos 8, sin 0) ,  N is the number of the highest wave-like mode, Yo and 
KO are the Neumann and MacDonald functions, respectively, Jm is the Bessel function 
of the first kind, and F(R, 8, z )  is the part of the Green’s function corresponding to 
the wake behind the obstacle. 

The form of the Green’s function, as obtained in (3.25)-(3.27), together with the 
results of $3.2 allow to formulate the effect of the boundary layers on the stationary 
disturbance forced by topography. As the behaviour of each mode in the boundary 
layers does not depend on the wavevector and the mode number, one can easily 
establish a direct connection between the solutions of the forced problem with and 
without boundary layers for arbitrary topography similar to that between the solutions 
of the homogeneous problem (3.22), (3.23), 

where y is the solution of the inhomogeneous problem with the boundary layers, vi 

is the solution for the same topography with the boundary layers neglected, U. and 
U* have the same sense as above, and Uo is the interior current value. 

Thus, the interior solution is multiplied by U(0).  However, the disturbance within 
the boundary layers is much larger, since it is again multiplied by U ( z ) ,  and hence 
the simultaneous presence of surface and bottom boundary layers must lead to 
pronounced surface patterns. 
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FIGURE 5. Normalized disturbance maximum (a and c)  and its horizontal gradient maximum ( b  and 
d )  cs. basic current surface velocity for the westward flow over an axisymmetric isolated obstacle. 
The leftmost point of each curve corresponds to the barotropic flow, the velocity integral over depth 
being kept constant along the curves. The vahes are normalized by the corresponding values for 
the barotropic flow with the same flux (u, b )  and for the barotropic flow equal to the maximum of 
the sheared current ( c , d ) .  Asymptotic curves are solid: numerical curves are dashed. The sketches 
illustrate the change of vertical structure and the barotropic flow used for normalization. 

In order to estimate the response enhancement due to the mechanism described, 
the amplitude of the disturbance caused by an axisymmetric isolated topography to 
the westward flow with boundary layers was compared with that for the ‘equivalent’ 
barotropic flow, the latter being defined as the barotropic flow with the same flux 
as the baroclinic one under consideration. The upper-boundary-layer thickness was 
taken to be about 150 m, while the thickness and velocity of the lower boundary layer 
were equal to and f of the corresponding surface values. The maximal amplitudes 
of the pressure disturbance and velocity were computed, both asymptotically and 
numerically; the ratios to the corresponding values in the equivalent barotropic 
current (enhancement coeflcients) are shown in figure 5 (a ,  b )  respectively for four 
values of westward flow average. The degree of the ‘boundary-layer nature’ of the 
flow is measured via the surface velocity Us.  The geophysically relevant enhancement 
is of one order in magnitude, though the averaged current should not approach zero, 
since then the link between two boundary layers becomes weak and the mechanism 
ceases to work. It is noteworthy that the enhancement for the velocity field is 
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roughly two times more pronounced than that for the pressure disturbance or surface 
elevation. 

The mechanism effectiveness is best demonstrated via the comparison of the dis- 
turbances maxima with those for the barotropic current equal to the maximum of the 
shear flow. Results are shown in figure 5 (c, d). Again, the asymptotic solution over- 
estimates the disturbance values to some extent; however, it is remarkable that even 
the values obtained numerically are normally larger for the shear current than for the 
‘maximum barotropic’ one. As noted above, this enhancement is most apparent for 
the velocity field. 

The cases of westward ( U ( z )  < 0) and eastward flow are obviously quite different, 
the latter being somewhat more complicated. The disturbance in the westward 
current caused by an axisymmetric obstacle is also axisymmetric, with the maximum 
over the obstacle centre, and decays like exp[-(min l ~ f 1 ) ~ / ~ R ] .  When the current 
is eastward, at least one of the K! is positive, and the wake of stationary Rossby 
waves exists, significantly distorting the surface disturbance. For a class of eastward 
flow configurations comprising most of the geophysically relevant situations, the wake 
consists of the barotropic mode only (that is, N = 0), being more rarely supplemented 
by the first baroclinic one. 

Though the wake is an important feature of the solution, its appearance does not 
seem to be of prime importance to main objectives of this paper. Indeed, the wake 
consists of stationary eddies of differing signs and is controlled by the barotropic 
(and perhaps first baroclinic) wavenumber, not by the shape of the topography. The 
wake behind a real topographic obstacle, usually having a very corrugated form, is 
unlikely to be observed, since the response would be produced by the sum of vortex 
chains with close length scales and virtually random amplitudes and phases. We note 
that this argument is commonly used for the explanation of the observed absence of 
wakes behind large seamounts in the ocean (see e.g. Roden 1991). 

The response corresponding to the axisymmetric part of the Green’s function 
defined by (3.26) is more crucial for the present study. An important feature of 
(3.26) is that, since the functions Yo, KO are both strongly localized near the origin, 
the Green’s function has the form of a rather sharp impulse. Actually, the function 
6(R,z) may either decay exponentially from the origin or oscillate, but in any case it 
has a ‘delta-like’ form, the response (3.10) being close to the shape of the topography, 
with the shorter scales suppressed. 

In order to make this statement more precise, consider the interaction of a single 
normal mode with topography of unit height comprising one Fourier mode in each 
horizontal direction 

h(x, y )  = cos(klx) ~ ~ ~ ( k z y ) .  (3.28) 

Calculating the convolution in (3.10), we easily obtain, for the decaying mode (IC; < 0), 
that the response has the form 

(3.29) 

where the constant depends on the model parameters. 

the ‘transmission coeficient ’ F, 
It is seen that each harmonic of the topography is reproduced on the surface with 
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Since I C ~  < 0, the coefficient is limited from above; thus the normal mode serves as a 
‘low-pass filter’ for the topography. The largest topography scales, O(k: +ki)+O(--K:), 
are transmitted almost undistorted, while the shorter scales are suppressed. 

The wave-like modes (xf > 0), provided that they are possible in the system, make 
the situation more complicated. Consider first the radial part of the Green’s function 
Cl(R,z) for the ith mode. If min(kf,ki) > rcf, the same result (3.29) is easily obtained. 
In the case of smaller k: or k;, compactness of topography is necessary for definiteness; 
it can be shown, however, that the proper cutting of the topography (3.28) at some 
large distance from the origin again leads to the formula (3.29), provided that the 
resonant cases K! = k:, ~f = k i ,  and K: = k: + k; are excluded. Now the same result 
(3.29 j corresponds to more complex transmission, since the transmission coefficient 
is not limited and changes sign at k: + k i  = K ; .  For a one-layer model this means 
that the large-scale topography is shown on the surface ‘inversely’, mountains on the 
bottom corresponding to negative pressure anomalies. Shorter scales are transmitted 
normally, as in the decaying mode case, but the spectral band near K;? is enhanced. 

It is obvious, however, that the wake produced by the wave-like mode would 
distort the topographic image being considered. The analysis for the two-dimensional 
sinusoidal topography is cumbersome; but in the simpler one-dimensional case 

h(xj = cos(kx) 

the result is just 

where the coefficient A, in general, depends on k ,  tci and the support of h (i.e. the 
set of all x for which h(xj # 0). Thus, the wake adds just one extra harmonic to 
the solution (recall that here we consider the solution for one normal mode over one 
Fourier harmonic in the bottom relief). 

3.4. Discussion 

The asymptotic analysis of the boundary-value problem (3.6) 43.7 a, b )  with the special 
(and geophysically relevant) structure of the functions U(z ) ,  S ( z )  allowed us to obtain 
a solution that meets the requirements formulated in the introduction. First, we 
have found that the boundary-layer structure of the incoming flow provides great 
enhancement of the surface disturbance that would be otherwise extinguished by 
stratification. Second, the analysis of the forced problem led to the conclusion that 
this disturbance represents a virtually perfect ‘hydrodynamic image’ of the topography, 
this property being clearly attributed to the fact that the Green’s function has a ‘delta- 
like’ dependence on the horizontal coordinates. Therefore, we have pointed out an 
effective mechanism for the surface manifestation of bottom topography. Now we 
will discuss certain problems and limitations associated with our approach. 

An important feature of the solution is that the amplitude of the surface disturbance 
strongly depends on the existence of narrow (101)-300 m) boundary layers, the 
presence of these layers in the ocean being justified by observations. However, since 
the normal mode approach is used throughout this paper, we must bear in mind 
that this approach ceases to be valid when the characteristic time for the formation 
of a normal mode exceeds the timescale over which these boundary layers exist. A 
very rough estimate of the characteristic time z of a mode formation could be found 
through calculation within the WKB-approximation of the time for a wave packet to 
cross the ocean from surface to the bottom. Actually, the vertical group velocity for 
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a Rossby wave with the wave vector k = { k , ,  k 2 , k 3 }  in the motionless homogeneously 
stratified ocean is defined by 

2f,2Bklk3 
N2(kt  + ki + f,2k,2/N2)2' c g z  = 

An elementary analysis of this formula shows that for a wave with, say, k,' = 1000 km, 
kF1 = 1000 m in the mid-latitudes cgz m 1 km/year (Gill 1982); but this value rapidly 
decreases with the reduction of the vertical scale, thus making the normal mode 
approach only marginally applicable. 

Another weak point of our approach is the neglect of viscous effects (or, to be more 
precise, only their implicit inclusion via the prescribed velocity profile). However, this 
inviscid solution seems to be a useful first step towards the the description of the 
manifestations mechanism. The problem that completely takes into account viscosity 
seems to be tractable through direct numerical simulation only and represents the 
subject of a separate study. 

We have so far left out the issue of the absolute amplitudes of the topographically 
caused disturbances at the surface. This point will be considered in the next section 
within the framework of a multi-layer model, where the direct solution for an arbitrary 
step-like profile of U ( z )  is accessible. 

4. The multi-layer model 
In order to clarify the role of the set of parameters that characterize the basic 

flow, we consider the multi-layer model. First we obtain the solution for an arbitrary 
n-layer model; it is obvious that the properties of the normal mode adjustment to 
the presence of boundary layers found in the previous section will be accompanied 
by their counterparts in the multi-layer model. We shall focus our attention on 
the detailed analysis of the three-layer model with the parameters relevant to those 
observed in nature. 

4.1. General solution 
The n-layer models are the classical tools of geophysical hydrodynamics (see e.g. 
Pedlosky 1979). The geometry and notation for the present case are specified in 
figure 6 .  We preserve the preceding notation where possible. Each ith layer is 
characterized by the velocity U,, pressure p ,  and thickness d,, while the interfaces 
between layers are described by the vertical displacement q, and the 'local Burger 
number' 

There are n layers and n- 1 interfaces. We enumerate them from bottom to top, the 
manner adopted from McCartney ( 1975). Pressure is non-dimensionalized as follows : 

k=l  
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PI 

FIGURF 6. Nomenclature for the multi-layer model. 

In each layer the quasi-geostrophic vorticity equation 

4mV;Pr + P Y )  = (WJZ, i = 1, .  . . , n, (4.3) 

where Vi = {i32/dx2,d2/i3y2}, is fulfilled, and the ideology of the quasi-geostrophic 
approximation requires the boundary conditions 

(qi - qi+l)vy,  = 0, i = I,. . . , n - 1 (4.4) 
to be applied at the undisturbed levels. Doing this, we obtain the system of n 
equations: 

As previously, we introduce the disturbance variables 4,, t,, so that p ,  = -U,y + 4, 
and qI = -(Ul - V,+,)y/S, + tL7 and integrate (4.5) along the streamlines. With 

5 ,  = (4h - 4I+l)/S (4.6) 
the linear system of the form 

is obtained; this 

(4.7) 

4 2  h v;41- PI41 = -- - ~ 

dlS1 die’ 
4i-1 $i+i . v;4i - pioi = -- - - E = 27. . . ,n-  1, 

diSj-1 djSi ’ 
6 - 1  v;4n - Pn& = -- 

d n s n - 1  

is a counterpart of the continuous problem (3.6), (3.7 a, b). Here we 
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i = 1, ..., n, p ui-1 ui+l +- p .  - -- + ~ 

ui uiaisi-l uiaisi’ 1 -  

where UO = Un+l = 0. 
The remarks of $ 2  concerning the possible presence of closed streamlines apply 

here as well. For consistency with the continuous case we also assume that all U ,  are 
of the same sign, though here the weaker condition may be used; this also guarantees 
the absence of instability. It is obvious, however, that the fulfillment of requirements 
underlying the quasi-geostrophic approximation cannot be guaranteed a priori. 

These requirements are more explicit for the present case and reduce to the condition 

514 4+1);  (4.8) 

this should certainly be verified a posteriori. 

convenient to rewrite the system (4.7) as 
Since our primary interest lies mainly in the uppermost streamfunction &,, it is 

(4.9) 

where 
bottom. They are found as roots of the algebraic equation 

a,K2n + a,-1 K2n-2 + . . . + a0 = 0, 

are the eigenvalues of the problem for stationary Rossby waves over a flat 

(4.10) 

with the coefficients 

an-4 = C PiPjPkP, - C PiPjQk + C QiQj,  etc. 

Here we have used the notation 

I 
(4.1 1) 

Qt = (4d+lS?)-’, (4.12) 

and it is seen that whilst P, refers to ith layer, Q, collects the terms important for the 
ith interface. This defines the summation instructions for (4.11): the summation is 
performed for all i, j ,  k ,  1 from 1 to n, with the requirement that when P, is multiplied 
by P,, i and j should be different; for the terms of the form PcQ1 the layer should not 
be adjacent to the interface (i < j or i > j + 1); for Q,Qj 1 i - j 1) 1. It can be shown 
that all I C ~  are real and different. 

The solution to (4.9) is straightforward since it is reduced to a combination of 
the one-layer solutions of Johnson (1977); Long’s condition is again required. It is 
convenient to present the solution, as before, in the form of a convolution 

4 n ( X ,  Y )  1: ~ ( x  - 5 ,  Y - q ~ t ,  q )  dtdq, (4.13) 

where the Green’s function is presented as a sum over the eigenmodes o f  the multi- 
layer problem 
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FIGURE 7. Disturbances in the three-layer model with a thick and slow middle layer 
caused by a cylindrical obstacle. ( a )  Westward current. The parameters values are: 
{Ul, U2, Cr3} = { -5 ,  -1, -8} cm s-', {S1, S2$ = {0.6,5.0}, { d l , d 2 , d 3 }  = {0.1,0.87,0.03}, H = 5000 m, 
h, = 400 m, radius of the cylinder is 50 km. Pressure disturbance isolines are shown in steps of 
5 x lo2 kg n1-l sP2 (approxirnatcly equivalent to 5 cm of water surface elevation). ( b )  Eastward 
current. As in ( a )  except for the flow direction, { U l ,  U z ,  U 3 }  = { 5 ,  1, S} cm s-', and isolines step 
lo3 kg m-' sP2. 

and each term is defined by 

with the coefficients 
r 1-1 

(4.16) 

Again it is understood that (x,y) = R(cos@,sin8), J ,  is the Bessel function of the 
first kind, and YO and KO are the Neumann and MacDonald functions, respectively. 

4.2. Three-layer model 
The analysis of the continuous and layered models allowed us to formulate certain 
general properties of the topographic disturbance and, in particular, to find the 
mechanism that is responsible for the visibility on the surface of a hydrodynamic 
image that retains the shape of the topography. Our next aim is to check and go over 
these results on the basis of a model that could represent the type of vertical structure 
described above, but at the same time would be characterized by a modest number of 
parameters. These requirements naturally lead to the choice of a three-layer model, 
the calculations for this case including only the solution of the cubic equation (4.10) 
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FIGURE 8. Maximum of the pressure disturbance in the uppermost layer (lo2 kg m-' s-') us. the 
middle-layer parameters (flow velocity Ul and thickness d2) : (a )  westward current, (b)  eastward 
current. The other parameters are as in figures 7 ( a )  and 7 ( b )  respectively. 

with n = 3. The direct application of the formulae (4.13)-(4.16) for the three modes 
is elaborated. 

The general picture exemplifying the three-layer flow over localized topography is 
shown in figure 7 (a,  b ) ,  the cases ( a )  and ( b )  corresponding to westward and eastward 
flow respectively. For simplicity the topography has been taken to have the form of 
a cylindrical cap. In both cases the middle layer is thick and almost stagnant, while 
the thin surface and bottom layers have an order of magnitude larger current. Again, 
the model is rendered consistent with the continuous case by the requirement that 
the velocities in all layers have the same sign. 

Though the velocities are moderate and confined to the thin layers, it is seen that 
both the disturbance in the case ( a )  and the part of the disturbance that represents 
not the wake but the image of the topography in the case ( h )  are pronounced in 
the surface layer. In the case of the westward current the disturbance is exactly 
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FIGURE 9. Maximum of the pressure disturbance in the uppermost layer (lo2 kg m-' sP2) ZIS. flow 
velocity in the bottom and surface layers U1, U j :  (a) westward current, ( b )  eastward current. Other 
parameters are as in figures 7 ( a )  and 7 ( b )  respectively. 

axisymmetric and associated with the region of closed streamlines. However, for the 
eastward current this image appears to be somewhat weaker and, in addition, is 
violently distorted by the wake. Since in this particular but characteristic example 
the only wave-like mode is the barotropic one, the wake is purely barotropic and in 
fact dominates the surface layer. Nevertheless, the outcrop of the Taylor--Hog cone, 
though shifted upstream, is still clearly discernible on the surface. 

It is easy to verify that if we replace the current by the equivalent barotropic flow, 
the stratification will prevent this disturbance from reaching the surface. Moreover, 
the surface disturbance diminishes when the small middle layer current is enlarged. 
This fact, which appears intuitively to be illogical, is a direct consequence of the 
theory developed in $ 3  and is demonstrated in figure 8 for another particular set of 
parameters. The disturbance attains its maximum at a certain value of the thick-layer 
velocity which is much smaller than that of the boundary layers, the phenomenon 
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FIGURE 10. Maximum of the pressure disturbance in the uppermost layer (10' kg m-I s - ~ )  us. 
bottom layer current velocity U I  and the lower interface density jump SI : (a) westward current, (b)  
eastward current. The parameters of figures 7 (a) and 7 ( b )  are again used otherwise. 

being clearly attributed to the enhancement mechanism described above. At smaller 
thick-layer velocities (in this example, less than 1 cm s-') one of the modes ceases 
to satisfy the long-wave asymptotic expansion and drastically changes, thus reducing 
its magnitude at the surface. The situation is more complicated for the eastward 
current (figure Xb), where with the change of the middle velocity the decaying 
mode can be turned into the wave-like one; the surface pattern then undergoes an 
abrupt transformation. On the other hand, the disturbance above the topography 
in the eastward current usually (i.e. for realistic values of parameters) has no closed 
streamlines, though its magnitude still depends analogously on the middle-layer 
velocity. 

Other parameters important for the enhancement mechanism are the velocity values 
within the boundary layers, the dependence of the disturbance in each layer on them 
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being presented in figure 9 (a ,  h).  The westward flow disturbance is generally stronger, 
and its dependence on both velocities is almost identical, being virtually linear for 
moderate current. For the eastward flow, increasing the surface current above a 
certain threshold value does not lead to further enhancement, while the dependence 
in the bottom flow is still practically linear. 

Lest the reader get the mistaken impression that the unrealistically high bottom- 
layer velocity is crucial for the mechanism described, let us consider the dependence 
of the surface disturbance on the bottom current and the stratification at the lower 
interface (figure 10). What is really important here is the normal mode increase 
towards the bottom (see $3) ,  which is caused, in fact, by the gradient of the current 
velocity, not by its absolute value in the boundary layer. 

We conclude this section with a brief remark on the validity of the quasi-geostrophic 
approximation. In fact, the regimes involved in the present study of the three-layer 
model require the lower interface to be significantly moved from its undisturbed 
position, thus formally violating the assumption that this distortion remains small 
in comparison to the thickness of the lower layer. However, it is important to 
note that this linear analysis of the multi-layer model is used in this paper for 
illustrative purposes only, while the continuous model bears less severe limitations 
due to quasi-geostrophy. On the other hand, we expect that the formal breakdown 
of the quasi-geostropic approximation within the multi-layer model does not lead to 
qualitative changes in the disturbance structure, and we hope to confirm this claim 
in our study of nonlinear ageostrophic regimes which is in progress now. 

5 .  Discussion 
Let us summarize the main results of the present paper and briefly discuss their 

limitations and possible ways of extension. 
We have pointed out an effective mechanism responsible for the transmission of 

large-scale (with the length scales of the order lo2 km) disturbances from the oceanic 
bottom to the surface. This mechanism is based upon the existence of shear currents 
with pronounced near-surface and near-bottom layers. This structure appears to 
be actually observed in the ocean, though information on the bottom currents and 
understanding of their dynamics are still fairly incomplete. However, it is important to 
stress that the value of the current in the lowest 5&100 m of about 2-3 cm s-l seems 
to be sufficient for the mechanism to work, provided that the bottom layer is separated 
by a certain density jump. The essence of the mechanism may be expressed in the 
following way. The eigenmodes of the boundary-value problem, corresponding to the 
current velocity profile described, have pronounced maxima in the near-bottom and 
near-surface layers, these maxima leading to effective mode forcing by the topography 
(the lower maximum) and to considerable disturbance in the surface fields (the upper 
maximum). In quantitative terms the effectiveness means that, say, an underwater 
hill of a few hundred metres height? in the 4-5 km deep ocean being subjected to an 
oncoming flow with the mean velocity of 1 cm s-l and a few centimetres per second 
at the surface and at the bottom, produces: 

(i) tilts of the free surface of 0(101 cm per 100 km) which are well within the 
range of accessibility of modern altimetry ; 

4 Higher underwater mountains are common and one might expect greater manifestations at 
the surface, but our theory in its present state is utilizing the quasi-geostrophic approximation and 
therefore we are confined to thc consideration of' relatively low topography. 
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(ii) displacements of the thermocline of several dozen metres, which might be 
directly visible provided that there is high plankton concentration in the thermocline 
and proper lighting conditions (e.g. Pelinovsky 1982) ; 

(iii) perturbations of the surface velocity field of the order of the mean velocity 
which are, in principle, detectable as well. 

Although in this paper we have confined our attention exclusively to the inves- 
tigation of the hydrodynamic transformation of surfac2 layer, our model could be 
straightforwardly extended to convert these disturbances into the surface temperature 
anomalies. This extension seems to be essential for the problem, since the original 
observations of the bottom topography manifestations dealt with the surface temper- 
ature field (see the introduction). Furthermore, present information on the surface 
temperature in the ocean is fairly complete, thus representing a readily available 
source of data for the analysis of the manifestation mechanism, 

The simplest model of the transformation of near-surface thermocline tilts into 
disturbances of the surface temperature field can be formulated as follows. Consider 
an upper mixed layer with an uneven lower boundary, heated (or cooled) from above 
with the constant heat flux Q. Since the turbulent diffusion coefficient A is several 
orders of magnitude larger within a mixed layer than below, it is reasonable to 
treat the layer as thermally isolated from the rest of the fluid. Neglecting the small 
horizontal mixing, the heat diffusion within the mixed layer of variable thickness H 
and initial temperature To can be described by the one-dimensional equation 

3T d2T 
at 822 

A- = 0, _ _  

with the boundary conditions 

(5.1) 

and the initial condition 

T(z,O) = To. (5.3) 
Solution to the problem (5.1)-(5.3) can be straightforwardly obtained in the form 

m 

n 2 Q H  [I -exp(-A---t) n27c2 ] cos (; -2 ) . (5.4) 
AQ 

H2 
T = To + -t + C(-l) n2n2 

n=l 
H 

Oceanic observations suggest typical values for the heat flux into the ocean in the 
range from -lo2 to lo2 W m-2 (Gill 1982); this corresponds to Q = 'r2 x lop3 m-'. 
The diffusion coefficient value for the mixed layer can be taken of the order lop2 m2 
s-I (Pollard 1977), and we shall assume that H = 0(102 m) with variations of the 
same order. Then on a timescale of 1-2 weeks the exponent in the right-hand side of 
(5.4) is very close to unity, while the second term gives temperature contrasts of the 
order 1-3 x lo-' degrees on the horizontal scale of the variations of H .  Note that 
according to this simple estimate, the value of the temperature disturbance depends 
on Q and thus may vary and even change sign in different oceanic conditions. The 
presence of intense high-frequency advective motions may diminish considerably the 
temperature contrasts found. However, under favourable conditions one may expect 
the estimate to be adequate. 

The problem of establishing the connections between the obtained 'hydrodynamic 
image' and images in optical and microwave bands seems to be much less straight- 
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forward, although realizable as well. Even a brief discussion of these problems goes 
beyond the scope of the present study. 

Another point of prime importance that we would like to emphasize is that the 
surface pattern is related to relief locaZZy. Thus one might expect the resemblance 
of the relief and its surface manifestations in all physical fields despite the fact that 
the physical mechanisms of transformation of the hydrodynamic image into other 
characteristics are not established completely yet. 

The sensitivity of the results to the basic assumptions is still unclear. The most 
confining limitation imposed by the quasi-geostrophic approximation we hope to 
overcome by studying a nonlinear ageostrophic model. (The work is in progress and 
the results will be reported elsewhere.) The question on the relation between the 
timescales for the formation of the steady regime that we studied and the formation 
of the boundary layers of the basic flow requires, strictly speaking, the solving of 
the self-consistent nonlinear unsteady viscous problem, a task tractable only through 
extensive direct numerical simulation. However, we hope to get some estimations just 
from the analysis of the linear unsteady problem. 

The presently available data do not allow the direct testing of the theory developed 
above. We are unaware of any data with the simultaneous measurements of near- 
surface fields at large scales and the currents within the upper and bottom layers. 
Nevertheless, the existing data demonstrate that the seasonal thermocline displace- 
ments due to moderate topography can be of the order of a few dozen metres (see 
figure 1 b) ,  in agreement with the present theory. 

We have shown in this paper that the specific vertical structure of the background 
flow is crucial for the surface signatures of topography. This fact prompts an 
interesting question: is it possible to reconstruct the vertical flow profile given only 
the surface observations and topography, provided that the surface manifestations 
are indeed present and measured with good accuracy? A positive answer would 
find very important applications in physical oceanography. This inverse problem was 
considered within the frame of the multi-layer model in Annenkov & Shrira (1993) 
(see also Annenkov & Shrira 1994), where it was found that the inverse problem 
is well posed for the three-layer model under certain additional assumptions. Thus 
for the three-layer model a unique solution to the inverse problem was constructed. 
The possibility of obtaining any information on the deep ocean currents from surface 
measurements seems to be very alluring and we plan to continue the analysis of this 
problem. The results will be reported elsewhere. 

This work has benefited from the useful discussions with many our colleagues, 
special thanks being due to L. A. Ostrovsky, G. M. Reznik and V. N. Zyryanov. 
We are grateful also to referees for their comments. The research was supported by 
Russian Foundation for Fundamental Research (Grant No. 94-05-17272) and by the 
International Science Foundation (Grants No. MMPOOO and MMP300). 
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